LPS-induced NFκB enhanceosome requires TonEBP/NFAT5 without DNA binding
نویسندگان
چکیده
NFκB is a central mediator of inflammation. Present inhibitors of NFκB are mostly based on inhibition of essential machinery such as proteasome and protein kinases, or activation of nuclear receptors; as such, they are of limited therapeutic use due to severe toxicity. Here we report an LPS-induced NFκB enhanceosome in which TonEBP is required for the recruitment of p300. Increased expression of TonEBP enhances the NFκB activity and reduced TonEBP expression lowers it. Recombinant TonEBP molecules incapable of recruiting p300 do not stimulate NFκB. Myeloid-specific deletion of TonEBP results in milder inflammation and sepsis. We discover that a natural small molecule cerulenin specifically disrupts the enhanceosome without affecting the activation of NFκB itself. Cerulenin suppresses the pro-inflammatory activation of macrophages and sepsis without detectable toxicity. Thus, the NFκB enhanceosome offers a promising target for useful anti-inflammatory agents.
منابع مشابه
Modulation of TonEBP activity by SUMO modification in response to hypertonicity
TonEBP is a DNA binding transcriptional enhancer that enables cellular adaptation to hypertonic stress by promoting expression of specific genes. TonEBP expression is very high in the renal medulla because local hypertonicity stimulates its expression. Given the high level of expression, it is not well understood how TonEBP activity is modulated. Here we report that TonEBP is post-translational...
متن کاملRegulation of nucleocytoplasmic trafficking of transcription factor OREBP/TonEBP/NFAT5.
The osmotic response element-binding protein (OREBP), also known as tonicity enhancer-binding protein (TonEBP) or NFAT5, regulates the hypertonicity-induced expression of a battery of genes crucial for the adaptation of mammalian cells to extracellular hypertonic stress. The activity of OREBP/TonEBP is regulated at multiple levels, including nucleocytoplasmic trafficking. OREBP/TonEBP protein c...
متن کاملAtaxia telangiectasia-mutated, a DNA damage-inducible kinase, contributes to high NaCl-induced nuclear localization of transcription factor TonEBP/OREBP.
High NaCl activates the transcription factor tonicity-responsive enhancer/osmotic response element binding protein (TonEBP/OREBP) by increasing its abundance and transactivation, the latter signaled by a variety of protein kinases. In addition, high NaCl causes TonEBP/OREBP to translocate into the nucleus, but little is known about the signals directing this translocation. The result is increas...
متن کاملNFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment.
Osmotic stress responses are critical not only to the survival of unicellular organisms but also to the normal function of the mammalian kidney. However, the extent to which cells outside the kidney rely on osmotic stress responses in vivo remains unknown. Nuclear factor of activated T cells 5 (NFAT5)/tonicity enhancer binding protein (TonEBP), the only known osmosensitive mammalian transcripti...
متن کاملMutations in DNA-Binding Loop of NFAT5 Transcription Factor Produce Unique Outcomes on Protein–DNA Binding and Dynamics
The nuclear factor of activated T cells 5 (NFAT5 or TonEBP) is a Rel family transcriptional activator and is activated by hypertonic conditions. Several studies point to a possible connection between nuclear translocation and DNA binding; however, the mechanism of NFAT5 nuclear translocation and the effect of DNA binding on retaining NFAT5 in the nucleus are largely unknown. Recent experiments ...
متن کامل